

Chandra's First Decade of Discovery Boston, MA 22 September 2009

Discovery of an Accretion-Fed Corona in a Young Star

Nancy S. Brickhouse

Collaborators: Steve Cranmer, Andrea Dupree, Juan Luna, and Scott Wolk

Accretion or Corona?

Chandra Large Observing Program TW Hydrae (TW Hya) High Energy Transmission Grating ~500 ks

- Test argument for X-rays from accretion
 (Kastner et al. 2002)
- If accretion, test accretion-shock model

(Brickhouse et al. 2009)

TW Hya

- Classical T Tauri star (accreting)
- 10 million yr old
- i=7° (pole-on)
- M = 0.8 M_{Sun}
- R = 0.7 R_{Sun}
- Distance 57 pc
- X-ray plasma has high Neon abundance

(Kastner et al. 2002; Drake et al. 2005)

Spectral Line Diagnostics

Segment of HETG spectrum showing H- and He-like Ne series

He-like Energy Levels (Smith et al. 2009)

Series lines are sensitive to absorption

He-like lons: O VII, Ne IX, and Mg XI

Diagnostics for T_e and N_e

X-Ray Line Ratio Diagnostics for **Density and Temperature**

TW Hva

Chandra HETG

6.4

Ma XI

O VII

6.8

7

6.6

log [T, (K)]

This looks like the accretion shock!

Accretion and a Corona

Hot "coronal" lines exhibit a large flare. The "accretion" lines do NOT flare. Variability occurs in both.

Complex absorption

- O VII: $N_{H} = 4.1 \times 10^{20} \text{ cm}^{-2}$
- Ne IX: N_H = 1.8 x 10²¹ cm⁻²

Not resonance scattering: Tau = g f λ , for a given ion

Series line ratios rule out

Testing the Accretion Shock Model

(Konigl 1991; Calvet & Gullbring 1998; Gunther et al. 2007; Cranmer 2008)

- Temperature and Density at Shock Front Agree with Model.
- Predicted density at O VII is 7 times larger than observed.

•Consider a new 2-Region model for the shock: Region 1 = the shock front Region 2 = the post-shock cooling region

•Each region has $N_{_{\rm e}}$, $T_{_{\rm e}}$, $N_{_{\rm H}}$, and V

•Predict the r, i, and f lines of the He-like ions

Note Gudel et al. 2007 Gudel & Telleschi 2007

•V2 = 300 x V1 => M2 = 30 x M1

TW Hya Campaign: Four Continents Plus Chandra

Dupree et al. 2009

Conclusions

- High S/N, high resolution spectrum obtained with Chandra HETG shows 3 regions: a hot 10 MK corona, an accretion shock, and a post-shock cooling region.
- Diagnostics show excellent agreement with models of the shock itself.
- Diagnostics show that standard, one-dimensional models of the post-shock cooling plasma don't work.
- We need a new type of coronal structure, an "accretion-fed corona" to be heated and ionized by the shocked plasma.
- Accretion-fed coronae may be common in accreting young star systems.