Modeling the X-ray emission from jets observed with Chandra

Rosaria (Sara) Bonito Dip.S.F.A., Universita' di Palermo INAF - Osservatorio Astronomico di Palermo

S. Orlando, INAF - Osservatorio Astronomico di Palermo G. Peres, Dip.S.F.A., Universita' di Palermo F. Favata, ESA, Community Coordination and Planning Office, Paris M. Miceli, Dip.S.F.A., Universita' di Palermo, INAF - Osservatorio di Palermo J. Eisloffel, Thüringer Landessternwarte, Tautenburg

Herbig - Haro objects

X-ray emitting HH jets (few examples)

- # Observed with both XMM and Chandra: 2000, 2001, 2005
- # No contamination from the stellar corona: A_v (star/jet)= (150/7) mag
- # The nearest most luminous jet: > 60 cnts in ~ 100 ks (single exposure)

object	L _X (10 ²⁹ erg/s)	T (MK)	N _H (10 ²² cm ⁻²)	D (pc)	references
нн 2	5.2	1.2	< 0.09	480	Pravdo et al. (2001)
HH 154	3.0	4.0	1.40 🤇	140	Favata et al. (2002; 2006) Bally et al. (2003)
HH 80/81	450	1.5	0.44	1700	Pravdo et al. (2004)
HH 168	1.1	5.8	0.40	730	Pravdo & Tsuboi (2005)
HH 210	10	0.8	0.80	450	Grosso et al. (2006)
DG Tau	0.12	3.4	0.3	140	Guedel et al. (2008)

HH 1 (?) Pravdo & Marshall (1981); HH 540 Kastner et al. (2005);

Tsujimoto et al. (2004); Stelzer et al. (2009)

Bonito et al. (2007)

Hydrodynamic model: continuous jet

(Bonito et al. 2004): count rate = 1.2 cnts/ks T = (3.4 ± 1.2)×10⁶K Fx = 1.4×10⁻¹³ erg/cm²/s

Observations

(Favata et al. 2002): count rate = 1.0 cnts/ks T = (4.0 ± 2.5)x10⁶ K Fx = 1.3x10⁻¹³ erg/cm²/s

Shocks from supersonic jets: reproduce in a natural way the observed L_X and (EM, T)_{best-fit} predicts proper motion

Natural candidate to explain the physical mechanism of the X-ray emission from protostellar jets

Bonito et al. (2004; 2007)

Favata, Bonito, Micela, Fridlund, Orlando, Sciortino, Peres (2006)

The pulsed jet scenario ume(yr) χ^2 $T \pm \Delta T$ $EM \pm \Delta EM$ Prob.^a 10 20 30 40 $n_{\rm H} \pm \Delta n_{\rm H}$ cnts 1031 $(10^{22} \text{ cm}^{-3})$ (10^6 K) $(10^{52} \text{ cm}^{-3})$ HH 154 1.4 ± 0.2 3.3 ± 0.8 7.0 ± 17.3 0.291000.95710³⁰ 9667 1.40 ± 0.02 3.8 ± 0.1 4.8 ± 1.2 0.800.991× (erg s⁻¹) 10²⁹ ^a Null hypothesis probability. DG Tau _ 10²⁸ M T_{a} ν v_{i} $n_{\rm a}$ 10²⁷ $[\mathrm{cm}^{-3}]$ $[{\rm km}~{\rm s}^{-1}]$ [10⁴ K] 0.2 0.4 0.6 0.8 1.0 1.2 500 2300 5000 10 0.1 time(10⁹ s) HD model as observed with Chandra 5" 111-029 20.09 10.09 0.09 ALC: UNK 100-070 70.09 101-026 1001-000

Bonito et al. (2009) in preparation

The pulsed jet scenario

- # X-rays from the base of the jet (e.g.: HH 154, DG Tau)
- **#** Complex morphology
- **#** Variability
- # Size of the X-ray source

Conclusions

- **#** T ~ 10⁶ K
- $# L_x \sim (10^{28} 10^{31}) erg/s$
- $# v_{sh} \approx 500 \text{ km/s}$
- # $V_{sh} \approx 500$ km/s # X-rays from the base of the jet (e.g. HH 154, DG Tau, ...) (*)
- # Complex morphology
- **#** Variability
- # HD model continuous jet: reproduces in a natural way the X-ray emission (T, $L_X v_{sh}$) does not explain (*)
- # Improved model to explain (*): blobs, v(t) random
- # Exploration of the parameter space:
 - $M, v, n_i, v(t)$, ejection rate
- # Results:

(*) + size in nice agreement with HH 154 and DG Tau promising model